Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Non-destructive optical analysis of band gap profile, crystalline phase, and grain size for Cu(In,Ga)Se2 solar cells deposited by 1-stage, 2-stage, and 3-stage co-evaporation

Identifieur interne : 000070 ( Main/Repository ); précédent : 000069; suivant : 000071

Non-destructive optical analysis of band gap profile, crystalline phase, and grain size for Cu(In,Ga)Se2 solar cells deposited by 1-stage, 2-stage, and 3-stage co-evaporation

Auteurs : RBID : Pascal:14-0026979

Descripteurs français

English descriptors

Abstract

Cu(In,Ga)Se2 (CIGS) thin films co-evaporated by 1-stage, 2-stage, and 3-stage processes have been studied by spectroscopic ellipsometry (SE). The disappearance of a Cu2-xSe optical signature, detected by real time SE during multistage CIGS, has enabled precise endpoint control. Band gap energies determined by SE as depth averages show little process variation for fixed [Ga]/([In]+[Ga]) atomic ratio, whereas their broadening parameters decrease with increasing number of stages, identifying successive grain size enhancements. Refined SE analysis has revealed band gap profiling only for 3-stage CIGS. Solar cells incorporating these absorbers have yielded increased efficiencies in correlation with phase control, grain size, and band gap profiling.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:14-0026979

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Non-destructive optical analysis of band gap profile, crystalline phase, and grain size for Cu(In,Ga)Se
<sub>2</sub>
solar cells deposited by 1-stage, 2-stage, and 3-stage co-evaporation</title>
<author>
<name sortKey="Ranjan, Vikash" uniqKey="Ranjan V">Vikash Ranjan</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Electrical and Computer Engineering, Old Dominion University</s1>
<s2>Norfolk, VA 23529</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Norfolk, VA 23529</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Begou, Thomas" uniqKey="Begou T">Thomas Begou</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Electrical and Computer Engineering, Old Dominion University</s1>
<s2>Norfolk, VA 23529</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Norfolk, VA 23529</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Little, Scott" uniqKey="Little S">Scott Little</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Physics and Astronomy, University of Toledo</s1>
<s2>Toledo, OH 43606</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Toledo, OH 43606</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Collins, Robert W" uniqKey="Collins R">Robert W. Collins</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Physics and Astronomy, University of Toledo</s1>
<s2>Toledo, OH 43606</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Toledo, OH 43606</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Marsillac, Sylvain" uniqKey="Marsillac S">Sylvain Marsillac</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Electrical and Computer Engineering, Old Dominion University</s1>
<s2>Norfolk, VA 23529</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Norfolk, VA 23529</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">14-0026979</idno>
<date when="2014">2014</date>
<idno type="stanalyst">PASCAL 14-0026979 INIST</idno>
<idno type="RBID">Pascal:14-0026979</idno>
<idno type="wicri:Area/Main/Corpus">000267</idno>
<idno type="wicri:Area/Main/Repository">000070</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1062-7995</idno>
<title level="j" type="abbreviated">Prog. photovolt. : (Print)</title>
<title level="j" type="main">Progress in photovoltaics : (Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Absorbent material</term>
<term>Absorber</term>
<term>Codeposition</term>
<term>Copper selenides</term>
<term>Crystalline phase</term>
<term>Energy gap</term>
<term>Gallium selenides</term>
<term>Grain size</term>
<term>Grain size analysis</term>
<term>Indium selenides</term>
<term>Multistage</term>
<term>Multistage circuit</term>
<term>Multistage method</term>
<term>Non destructive method</term>
<term>Optical characteristic</term>
<term>Optical properties</term>
<term>Performance evaluation</term>
<term>Phase control</term>
<term>Quaternary compound</term>
<term>Real time</term>
<term>Solar cell</term>
<term>Spectroscopic ellipsometry</term>
<term>Thin film</term>
<term>Thin film cell</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Méthode non destructive</term>
<term>Bande interdite</term>
<term>Phase cristalline</term>
<term>Grosseur grain</term>
<term>Granulométrie</term>
<term>Cellule solaire</term>
<term>Codépôt</term>
<term>Ellipsométrie spectroscopique</term>
<term>Temps réel</term>
<term>Circuit multiétage</term>
<term>Multiétage</term>
<term>Méthode section divisée</term>
<term>Absorbeur</term>
<term>Matériau absorbant</term>
<term>Evaluation performance</term>
<term>Commande phase</term>
<term>Cellule couche mince</term>
<term>Caractéristique optique</term>
<term>Propriété optique</term>
<term>Séléniure de cuivre</term>
<term>Séléniure de gallium</term>
<term>Séléniure d'indium</term>
<term>Composé quaternaire</term>
<term>Couche mince</term>
<term>Cu(In,Ga)Se2</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Cu(In,Ga)Se
<sub>2</sub>
(CIGS) thin films co-evaporated by 1-stage, 2-stage, and 3-stage processes have been studied by spectroscopic ellipsometry (SE). The disappearance of a Cu
<sub>2-x</sub>
Se optical signature, detected by real time SE during multistage CIGS, has enabled precise endpoint control. Band gap energies determined by SE as depth averages show little process variation for fixed [Ga]/([In]+[Ga]) atomic ratio, whereas their broadening parameters decrease with increasing number of stages, identifying successive grain size enhancements. Refined SE analysis has revealed band gap profiling only for 3-stage CIGS. Solar cells incorporating these absorbers have yielded increased efficiencies in correlation with phase control, grain size, and band gap profiling.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1062-7995</s0>
</fA01>
<fA03 i2="1">
<s0>Prog. photovolt. : (Print)</s0>
</fA03>
<fA05>
<s2>22</s2>
</fA05>
<fA06>
<s2>1</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Non-destructive optical analysis of band gap profile, crystalline phase, and grain size for Cu(In,Ga)Se
<sub>2</sub>
solar cells deposited by 1-stage, 2-stage, and 3-stage co-evaporation</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>RANJAN (Vikash)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>BEGOU (Thomas)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>LITTLE (Scott)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>COLLINS (Robert W.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>MARSILLAC (Sylvain)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Electrical and Computer Engineering, Old Dominion University</s1>
<s2>Norfolk, VA 23529</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Physics and Astronomy, University of Toledo</s1>
<s2>Toledo, OH 43606</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>77-82</s1>
</fA20>
<fA21>
<s1>2014</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>26755</s2>
<s5>354000500724620100</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2014 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>18 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>14-0026979</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Progress in photovoltaics : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Cu(In,Ga)Se
<sub>2</sub>
(CIGS) thin films co-evaporated by 1-stage, 2-stage, and 3-stage processes have been studied by spectroscopic ellipsometry (SE). The disappearance of a Cu
<sub>2-x</sub>
Se optical signature, detected by real time SE during multistage CIGS, has enabled precise endpoint control. Band gap energies determined by SE as depth averages show little process variation for fixed [Ga]/([In]+[Ga]) atomic ratio, whereas their broadening parameters decrease with increasing number of stages, identifying successive grain size enhancements. Refined SE analysis has revealed band gap profiling only for 3-stage CIGS. Solar cells incorporating these absorbers have yielded increased efficiencies in correlation with phase control, grain size, and band gap profiling.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Méthode non destructive</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Non destructive method</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Método no destructivo</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Bande interdite</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Energy gap</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Banda prohibida</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Phase cristalline</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Crystalline phase</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Fase cristalina</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Grosseur grain</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Grain size</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Grosor grano</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Granulométrie</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Grain size analysis</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Granulometría</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Cellule solaire</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Solar cell</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Célula solar</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Codépôt</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Codeposition</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Codeposición</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Ellipsométrie spectroscopique</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Spectroscopic ellipsometry</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Elipsometría espectroscópica</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Temps réel</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Real time</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Tiempo real</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Circuit multiétage</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Multistage circuit</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Circuito multipiso</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Multiétage</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Multistage</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Poliescalonado</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Méthode section divisée</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Multistage method</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Absorbeur</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Absorber</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Absorbente</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Matériau absorbant</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Absorbent material</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Material absorbente</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Evaluation performance</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Performance evaluation</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Evaluación prestación</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Commande phase</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Phase control</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Control fase</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Cellule couche mince</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Thin film cell</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Célula capa delgada</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Caractéristique optique</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Optical characteristic</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Característica óptica</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Propriété optique</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Optical properties</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Propiedad óptica</s0>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Séléniure de cuivre</s0>
<s2>NK</s2>
<s5>22</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Copper selenides</s0>
<s2>NK</s2>
<s5>22</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Séléniure de gallium</s0>
<s2>NK</s2>
<s5>23</s5>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Gallium selenides</s0>
<s2>NK</s2>
<s5>23</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>Séléniure d'indium</s0>
<s2>NK</s2>
<s5>24</s5>
</fC03>
<fC03 i1="22" i2="3" l="ENG">
<s0>Indium selenides</s0>
<s2>NK</s2>
<s5>24</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>Composé quaternaire</s0>
<s5>25</s5>
</fC03>
<fC03 i1="23" i2="X" l="ENG">
<s0>Quaternary compound</s0>
<s5>25</s5>
</fC03>
<fC03 i1="23" i2="X" l="SPA">
<s0>Compuesto cuaternario</s0>
<s5>25</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Couche mince</s0>
<s5>26</s5>
</fC03>
<fC03 i1="24" i2="X" l="ENG">
<s0>Thin film</s0>
<s5>26</s5>
</fC03>
<fC03 i1="24" i2="X" l="SPA">
<s0>Capa fina</s0>
<s5>26</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>Cu(In,Ga)Se2</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fN21>
<s1>027</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000070 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000070 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:14-0026979
   |texte=   Non-destructive optical analysis of band gap profile, crystalline phase, and grain size for Cu(In,Ga)Se2 solar cells deposited by 1-stage, 2-stage, and 3-stage co-evaporation
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024